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RESEARCH MEMORANDUM

INVESTIGATION AT LOW SPEED OF THE EFFECTIVENESS AND
HINGE MOMENTS OF A CONSTANT-CHORD AILAVATOR
| ON A LARGE-SCALE TRIANGULAR WING
WITH SECTIOR MODIFICATION

By John G. Hawes and Ralph W. May, Jr.
SUMMARY

An Investigation has been conducted in the Langley full-scale
tunnel to determine the low-speed longitudinal, lateral, and hinge-
moment control characteristics of a basic 60° delte wing of aspect
retio 2,31 with 1O0-percent-thick bilconvex symmetrical airfoll sections.
The wing was also tested in an altered condition with & nose glove
employing NACA 65-010 section ordinates. The wing was equipped on
the left semispen with a constent-chord plain semispan allavator having
two segments.

The results lndicate that the characteristic force bresks caused
by & separation vortex on the basic sharp-edged airfoll were eliminated
by installing an NACA 65-010 nose glove. The effectiveness and hinge
moments for the full semispan ailavator for both wings represent the
sum of the characteristics of the two segments. The leading-edge
separation vortex on the sharp-edged wing introduced large hinge-
moment discontinuities with large ailavetor deflections.

INTRODUCTION

Previous pressure-distribution and flow investigetions of triangular
wings (references 1, 2, and 3) have shown leading-edge separation with
an accompanying strong vortex flow for wings with sharp-edged airfoils,
but the effect of the vortex decreased for the wings having sirfoil
gsections with increasing nose radii. In fact, the large-scale triasngular
wing of reference 1 and the small-scale triangular wing of reference X4,
both with nounded leading edges, showed trailing-edge separation of the
type normally expected for conventional wings.
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In the flow investigation of a zero-taper-ratio wing, reported in
reference 3, it was shown that the separation vortices increased in
gize and Intensity as they swept progressively from the leading edge
inboard towerd the plane of symmetry with lncreased angle of attack.
The progression of this type of flow over the tlp sections and wing
treiling edge would be expected to influence the control character-
igtics of tralling-edge flaeps or ailavators, in view of the varied
loading of the sections.

The present tests were conducted in the Langley full-scale tunnel
to invegtigate the effects of the vortex flow on the effectiveness and
hinge-moment characteristics of cutboard, inboard, and full-semlspan
constant-chord asilavators on the large-scale triangular wing of
reference 5.

In an asttempt to alleviate the leading-edge separation and vortex
flow, the nose sectlon of the basic wing was altered by instelling =a
glove incorporating NACA 65-010 section ordinates parallel to the
free gtresm over the forward 10 percent of the chord and falred to the
wing et approximately the 50-percent~chord line.

COEFFICIENTS AND SYMBOLS

The dets are presented as standerd NACA coefficients of forces
and moments. The data asre referred to a set of sxes coinciding with
the wind axee, and the origin was located at the quarter chord of the
meen serodynamic chord.

C wing 11ft coefficient [-L
C dra.g coefficient 2
D gqS
M
Cm pltching-moment coefficient 'qﬁ')
hinge- t fficlent
Cy . nge-moment coe clen (Egb—a-)
Ll
Cy rolling-moment coefficlent (qTﬁ-)
c yawing-moment coefficient (—N—)
n qbS

ac
C-L6 e rate of change of 1lift coefficlent with left allavator
L 9% deflection at & = O, per degree
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a .
Cpn = -EE- rate of change of pitching-moment coefficient with left
8/1, 9% allavetor deflection at ®; = O, per degree

(Ch5 = —— 1rate of change of hinge-moment coefficient with left
L

BGL ailavator deflection at &; = O, per degree

Czs) = —— rate of change of rolling-moment coefficient with left
L

BSL ailavator deflection st &, = O, per degree

Cp ) = —= rate of change of yawing-moment coefficlent with left
L allaevator deflection at SL = 0, per degree

t ) rolling moment, foot-pounds
pitching moment, foot-pounds
yawlng moment, foot-pounds
hinge moment, foot-pounds
1ift, pounds
ares of the wing, squere feet
alrgpeed, feet pef second

total drag, pounds

¢ U < wm H H =2 =8 o

wing span, feet

d

distance along lateral axis, feet

wing chord, feet

(o]

_ b/2
mean aerodynamic chord, M.A.C., feet g- / cldy
0

ol

Ol

ailevetor root-mean-square chord, feet

b allavator span, feet
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q dynamic pressure (%-pve), pounds per square foot

o angle of attack of the wing chord line, degrees

o] . msess density of alr, slugs per cublc foot

SL angle of left allavetor from wing chord line, positive
down, degrees

Subscripts:

L left gemispan

i inboard ailavator

o] outboard ailavator

MODEL

The geometric characteristics of the basic sharp leading-edge
wing having 60° leasding-edge sweep and 10-percent-thick symmetrical
biconvex airfoll sectiong parallel to the plane of symmetry are given
in figure 1. The wing has an area of 231 square feet and an aspect
ratlio of 2,31. Further description of the wing 1s given in
reference 5.

The round-nose configuration was formed by attaching an NACA 65-010
alrfoll section nosme glove to the basic wing. A true section wes
formed to the 10-percent-chord line and was arbitrerily faired from
this station to the basic wing at approximately the 50-percent-chord line.
A gap wes provlided In the glove on the left semispan tip to allow move-
ment of the silavator. A schematic draswing of the glove ie given in
figure 1 and the ordinates used are presented in table I. The wing had
no geometric twist or dihedral.

The wing wes equlpped with a 12,5-percent wing-root-chord tralling-
edge plaln eilevator having outboard and lnboesrd segments of equal span
capeble of being deflected individuaslly or in combinatlion on the left
semispan.

Photographs of the wing with the basic and round-ncse configurations,
mounted on the six-component balance pystem of the Langley full-scale
tunnel, and close-up vliews of the ailavators, are given in figure 2,
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TESTS

Tests were made on the sharp-leading-edge and round-nose configura-
tlons to determine 1ift, dreg, rolling, yewing, and hinge moments at
zero yaw through an angle-of-atteck range from -5.2° to +33.3° for
ellavator deflections in increments of 5° from -30° to +30°. Hinge
moments of each segment of the allavators were measured for the segments
deflected indlvidually snd for the segments deflected together in order
to evaluate the interaction between them. No measurements were made
of the hinge moments of the full semispan ailavaptor as & unit, but the
sum of the hinge moments of the individual segments measured with the
segments deflected together should be ldentically equal to the hinge
moments of the unit.

For all tests the dynamic pressure was T.3 pounds per square foot,
regulting in 8 Reynolds number based on the mean aercdynamic chord of
6.00 X 106. The airspeed wes sapproximately 55 mlles per hour, corre-
sponding to & Mach number of about 0.0T.

The data were corrected for effects of Jet-boundery Ilnterference,
glr-stream misalinement, buoyency, and blocking. Support tare correc-
tions were not investigated since they were found to be negligible in
reference 5 for an ldentical wing and support setup.

RESULTS AND DISCUSSION

Presentetion of Data

To facllitate discussion of the results, the presentation of data
is outlined below.

The longitudinal characteristics including 1ift, drag, and pitching-
moment coefficients of the basic and round-nose wings as affected by
angle-of-attack change and outboard, inboard, and semispan ailavator
deflections are shown in figures 3 to 10. Figures 6 and 10 are summary
figures of the variations of C_ and C, with &, &t a-= 0°, and

L
<cm6)L and (lea)L with o.

The lateral characteristics including rolling and yawing-moment
coefficlents for both wing configurations are shown in figure 11 and 12,
FPigure 13 is a summary flgure of the variation of Cn> end CZ )

3] o]
L L

with angle of attack.

~
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The hinge-moment characteristics of each ailavator segment with the
segments deflected individually or together are shown in figures 14 and
15. Figure 16 presents the variation of hinge moment with ailavator
deflection for zero angle of attack, and figure 17 summarizes the
varistion of (ChS) with angle of attack.

L

In some instances the allavetors were not set precisely at the
desired angle and results for constant-deflection angles of the aila-
vators were interpolated from falred dste curves.

Longitudinal Characteristics

Basic wing.- As discussed in detail in reference 3, the existence
of a separation vortex, which 1s characteristic of highly swept wings
having small leading-edge radll, has a tendency to increase the 1lift
on outboard portions of the wing. As the angle of attack is increased,
bowever, the vortex sweeps Inboard towards the plane of symmetry, and,
as a result, the outboard portion becomes completely stalled. As seen
in figures 3(a) and 5(a), positive deflections of the outboerd segment
produced rather large Increases in lift-curve slope and rearward shifts
in center of pressure at 1lift coefficlents from epproximetely 0.3 to
0.6. At 11ift coefficients just above 0.6, the outboard portions
become completely stalled; hence, a decrease In lift-curve slope and
an abrupt unstable change in pitching moment resulted. These changes
were intensifled with increased outboard silavator deflections. With
en Increase in angle of attack the stall spreads ferther over the lnboard
portions end the pitching-moment variation becomes stable for all flap
deflections. As a result of thils separation progression over the wing,
the effectiveness (CI€> of the outboard allsasvator first increases and

L
then decreases as the angle of attack is increased (see fig. 6).

The maximum C; for the basic wing with sllavetors undeflected was

1.08 and was reached at an angle of attack of 33.3°. As the ailavators
were deflected to angles over 10°, the minimm drag began to increase
epprecisbly end the variastlon of drag with 1ift became greater.

Effect of adding nose glove.- As shown I1n reference 2, rounding the
sharp leading edge of e full-scale trlanguler wing to 0.0025c removed
the force breaks with the flaps undeflected but not with the flaps
deflected. Increasing the leading-edge radius to 0.0llc hasd no further
significant effect. In the present tests, installing the NACA 65-010
nose glove with a leading-edge radius of 0.00687c resulted in removing
all 1rregularities in the lift-curve slopes and unstable breaks in
the pitching moments (figs. 7 to 9).
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As a result of the absence of the vortex flow, the irregularities
in the variation of CL8 and <Fm§>L with angle of attack, which

were observed in the sharp-leading-edge configuration (fig. 6), were
removed by changing to the NACA 65-010 leading edge (fig. 10). With

the nose glove installed, the outboard ailevator shows a gradual decrease
in both 1ift and moment effectiveness and the inboard ailavator shows
practically no change as the angle of attack was increased. It is of
interest also to note that at all but the lowest angles of attack the
flap effectiveness 1is appreciably greater for the basic wing than for
the round-nose wing; possibly positive flap deflection at a fixed angle
of attack tends to increase the size of the vortex and provide, thereby,
an additional 1ift increment.

For a-given high-lift coefficient positive ailavator deflections
produced smeller Cp values than negative deflections for all ailavator
configurations tested. For a positive deflection of 309, the inboard
ailavator generally produced the least drag.

From dats obtained but not presented, it was found that sealing the
gap at the allavator leading edge with the allavator at zero deflection
had s negligible effect on the longitudinal characteristics of the wing.

Iateral Charscteristics

Basic wing.- For moderste allavator deflections, the variation of
rolling moment with deflection, as shown in figure 11, was fairly linear
at every angle of attack. As would be expected, the semispan ailavator
produced the greater rolling moment.

The point for which the 1lift coefficient i1s 85 percent of Cr >

which.is considered representative of the usable C(C; for the landing

condition, is indiceted on the ailavator-effectiveness parameter
Cis L curve in figure 13(a). For the outboard, inboard, end semispan

ailavators, the values of (CZS>L at 0.85C; are 0.00065, 0.00065,

and 0.0014, respectively. After the loss of additional 1ift at the
tips, caused by the inboard displacement of the conical vortex, the
outboard and semispan ailavators lost effectiveness with increasing
angles of attack. The outboard-allavator effectiveness &at 0'85ch
ax

was one-half thet measured at an angle of attack of approximately 10°,
Just prior to wing-tip stall. The rolling effectiveness of the semispan
allavator is very nearly the sum of the effectivenesses of the two
seguents over the lift-coefficient range.

Favorable yawing moments were produced by negetive deflections of
the ailavators at angles of attack up to 5.3°, but with angles of attack
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over 5.3°, there was an adverse yaewing moment produced (fig. 11(b)}.

Positlve deflections of the allavators produced asdverse yawing moments

for the entire range of «. The value of (Cna) becomes more negative
L

with increasing values of o, the variation being nearly lirear for the
basic wing as shown in figure 13(a).

Effect of adding nose glove.- For the round-nose configuration the
variation of rolling moment with allavator deflection was felrly linesar
at each angle of attack except near stall, as shown in figure 12(a),

but the velues of CZ were not as large as those for the baslc wing.

The inbosrd sllavator produced values of (Cza) ebout one-third and
L
the outboard aillavetor about two-thirds those of the full semispan
allavator at low and moderate angles of attack eas shown in Pfigure 13(b).
At high angles of attack, however, the outboard-asilavetor effectiveness
decreased rapidly such that the values of <Cz ) at 0.85C were
8/ Imex

0.00050, 0.00055, and 0.00115 for outbosrd, Iinboerd, and semispan
ailavators, respectively.

The round-nose conflguration displsyed the favorable yawing moments
noted on the baslc wing for negative allavetor deflections at angles
of attack up to 10.7° (fig. 12(b)). At grester angles of attack negative
gllaevetor deflectlons produced adverse moments. Positive deflections
of the allavatore produced adverse yawling moments for the entire range
of .

Hinge-Moment Characteristics

Basic and round-nose wings.- The development of the characteristic
type of vortex flow resulting from leading-edge separatlion on the sharp-
leading-edge. wing introduced severe hinge-moment discontinuitles with
large allavator deflections (fig. 14). The round-nose wing has smooth
hinge-moment characteristics throughout the lift-coefficient range
except with high negative ailavator deflections (fig. 15).

For both wings, the inboard allavator values of <Cha) at low and

L
moderate angles of attack (figs. 16 and 17) were zeroc or very small for
small deflections. For larger angles of attack and high positive or
negative asilavator deflection angles, values of (Cha) attained the
L

usual high negative values. Hlnge-moment characteristics of this type
are falrly common for controls having large tralling-edge angles.
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(S8ee reference 6.) Comparison of data for ailavators deflected
individually end together with the other segment shows very little
interaction.

SUMMARY OF RESULTS

The significant results of the investligation at low speed of the
effectiveness and hinge-moments of a constant-chord ailavator on a
large-scaele triasngular wing with symmetrical blconvex sectlons and also
with the sections modified by installing an NACA 65-010 nose glove are
summarized ag follows:

1. The characteristic force breaks ceused by & separation vortex
on the baslc sharp-edged sirfoll were eliminated by installing the
NACA 65-010 nose glove.

2. For the basic wing, the values for the ailavetor-effectiveness
parameter (Czé) for the outboard, inboard, and semispan allavators
L
at o.85clmax were 0.00065, 0.00065, and 0.001%; for the round-nose

wing the values were 0.00050, 0,00055, and 0.00115, respectively.

3. The effectiveness and hinge moments of the full semispan
ailavator for both wings represent the sum of the characterisgtics of the
two segments. '

4, The leading-edge separation vortex on the sharp-edged wing
introduced large hinge-moment dlscontinulties with large aillavator
deflections.

Langley Aeronautical Laboratory
National Advisory Committee for Aeronautics
Langley Field, Va.
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TABLE I.- ATRFOIL ORDINATES PARALLEL, TO PLANE OF

SYMMETRY OF WING CONFIGURATIONS TESTED

[All dimensions 1in percent choz_-d.:‘

Ordinsate
Station Basic wing Wing with NACA
(10-percent-thick biconvex) 65-010 glove

O 1 emmmmememe ] s e ——————— e ——
500 ] cemea——— 0.77
5 1 memee——— .93
1.25 0.25 1.17
2.5 kg 1.57
5.0 .96 2.18
7.5 1.40 2.65
10 1.81 3.0k
15 2.56 3.66
20 3.21 .ot
25 3.75 L ko
30 .21 k.67
35 4.55 k.81
Lo 4,80 .oz

45 4,95 4,08 -

50 . 5.00 5.00
55 k.95 k.95
60 k.80 k.80
65 4,55 k.55
70 -3 1 k.21
™ 3.75 3.7
80 3.21 3.21
85 2.56 2.56
90 1.81 1.81
95 .96 .96

100 | emmmmeee ] e

L.B. redius = 0.00687c
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(a) Basic sharp-edged wing configuration.

€T

Figure 2.- The low-aspect-ratio triangular wing mounted in the Langley
full-scale tunnel.







(b) EACA 65-010 round-nose glove configuration.

Flgure 2.~ Continued.
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(&) Combination inboard and outboard left semispan ailavator deflected
downward.

Figure 2.- Concluded.
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Figure 5.- Effect of left semispan aillavator deflection on the 1ongitud1nal
cheracterlstlices of the basic wing configuration.
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Figure 7.- Effect of left outboard silavator deflection on the longitudinal
characteristice of the round-nose wing configuration.
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Figure 11.- Effect of left allsvator deflection on the rolling- and yewing-
moment characteristics of the basic wing configurastion.
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Figure 12.- Effect of left allavator deflection on the rolling- and yawing-
moment characteristics of the round-nose wing configuration.
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Figure 1k.~ Continued.
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Figure 15.- Effect of left allavator deflection on the hinge-moment charac-
teristics of the round-nose wing configuration.
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Flgure 15.- Continued.
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(¢) Inboard allavator deflected alone.

Figure 15.- Continued.
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(d) Inboerd ailavator deflected in combination with outpboard ailavator.

Figure 15.- Concluded.
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Figure 16.- Effect of allavator plan form on the variastion of Cp with B8

for the besic and round-nose wing configurations at zero uncorrected
angle of attack.
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(b) Round-nose wing configuration.

Figure 17.- Variation of (ChS)L with a. ((ChB)L measured at &p, = oo_)
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